Characters, dimensions and branching rules for covariant irreps of $\mathrm{U}(\mathrm{N} / \mathrm{M})$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 171573
(http://iopscience.iop.org/0305-4470/17/8/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 08:34

Please note that terms and conditions apply.

Characters, dimensions and branching rules for covariant irreps of $\mathbf{U}(N / M)$

B G Wybourne
Physics Department, University of Canterbury, Christchurch, New Zealand

Received 3 January 1984

Abstract

The theory of symmetric functions is used to obtain simple expressions for the characters and dimensions of the covariant irreps of the supergroup $\mathbf{U}(N / M)$. Schur function expressions are given for a number of important branching rules.

1. Introduction

Balantekin and Bars (1981a, b, 1982) have recently outlined methods for evaluating the characters, dimensions and branching rules for the covariant irreps of $\mathrm{SU}(N / M)$ supergroups. Their results may be succinctly expressed by making use of the theory of symmetric functions. The relevant theory of symmetric functions has been given by Macdonald (1979).

In this note we give simple expressions for the characters and dimensions of the covariant irreps of $\operatorname{SU}(N / M)$ together with simple Schur function expressions for appropriate branching rules. We follow the notation given in the papers of Balantekin and Bars together with that of the relevant theory of Schur functions and series (Littlewood 1950, Wybourne 1970, Black and Wybourne 1983, Black et al 1983, King et al 1981).

2. Characters and dimensions

The covariant irreps for both $S U_{(N)}$ and $\mathrm{SU}_{(N / M)}$ may be conveniently labelled by ordered partitions $\{\lambda\}$. For $\mathrm{SU}_{(N)}$ restriction to inequivalent irrep limits the partitions to not more than $N-1$ parts; no such restriction arises for $\operatorname{SU}(N / M)$.

Schur functions $\{\lambda\}$ arise naturally in the theory of the symmetric group S_{n} with the characteristics χ_{ρ}^{λ} of S_{n} being the elements of the transition matrix $M(s, p)_{\lambda \rho}$ that relates the Schur functions $\{\lambda\}$ to the power sum symmetric functions p_{ρ} to give (Macdonald 1979)

$$
\begin{equation*}
\{\lambda\}=\sum_{\rho} M(s, p)_{\lambda \rho} p_{\rho}=\frac{1}{\omega_{\lambda}!} \sum_{\rho} h_{\rho} \chi_{\rho}^{\lambda} p_{\rho} \tag{1}
\end{equation*}
$$

where ω_{λ} is the sum of the parts of the partition (λ) and

$$
(\rho)=\left(\begin{array}{llllll}
k^{m_{k}} & \ldots & i^{m_{t}} & \ldots & 2^{m_{2}} & 1^{m_{1}} \tag{2}
\end{array}\right)
$$

in the class ρ of h_{ρ} elements of $S_{n}\left(n=\omega_{\lambda}=\omega_{\rho}\right)$ with

$$
\begin{equation*}
h_{\rho}=n!z_{\rho}^{-1} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{\rho}=\prod_{i=1}^{k} i^{m^{\prime}} m_{i}! \tag{4}
\end{equation*}
$$

The class ρ is of length l_{ρ} and parity ε_{ρ} where

$$
\begin{equation*}
l_{l}=\sum_{i=1}^{k} m_{i} \quad \text { and } \quad \varepsilon_{\rho}=(-1)^{\omega_{\rho}-l_{\rho}} \tag{5}
\end{equation*}
$$

It is convenient to let $m_{\rho}^{\circ}\left(m_{\rho}^{\mathrm{e}}\right)$ denote the sum of the multiplicities m_{i} of the odd (even) parts of ρ.

If the symmetric functions p_{ρ} are defined on the roots of the group elements U of $\mathrm{U}_{(N)}$ we have for the character $\chi_{\{\lambda\}}$ of U_{N}

$$
\begin{equation*}
\chi_{\{\lambda\}}=\frac{1}{\omega_{\lambda}!} \sum_{\rho} h_{\rho} \chi_{\rho}^{\lambda} \prod_{i=1}^{k}\left(\operatorname{Tr} U^{i}\right)^{m_{1}} . \tag{6}
\end{equation*}
$$

For $\mathrm{U}_{(N / M)}$ we simply replace the trace Tr by the supertrace STr (Balantekin and Bars 1981a) to give for $\mathrm{U}_{(N / M)}$

$$
\begin{equation*}
\chi_{\{\lambda\}}=\frac{1}{\omega_{\lambda}!} \sum_{\rho} h_{\rho} \chi_{\rho}^{\lambda} \prod_{i=1}^{k}\left(\mathrm{~S} \operatorname{Tr} U^{i}\right)^{m_{\ell}} \tag{7}
\end{equation*}
$$

The dimension $D_{\{\lambda\}}$ of $\{\lambda\}$ for $U_{(N)}$ then becomes

$$
\begin{equation*}
D_{\{\lambda\}}=\frac{1}{\omega_{\lambda}!} \sum_{\rho} h_{\rho} \chi_{\rho}^{\lambda} N^{t_{r}} \tag{8}
\end{equation*}
$$

while for the class I irreps $\{\lambda\}$ of $U_{(N / M)}$

$$
\begin{equation*}
D_{\{\lambda\}}=\frac{1}{\omega_{\lambda}!} \sum_{\rho} h_{\rho} \chi_{\rho}^{\lambda} x^{m_{\rho}^{\circ}} y^{m_{\rho}^{e}} \tag{9}
\end{equation*}
$$

and for the class II irreps $\overline{\{\lambda\}}$

$$
\begin{equation*}
D_{\overline{\{\lambda\}}}=\frac{1}{\omega_{\lambda}!} \sum_{\rho} h_{\rho} \chi_{\rho}^{\lambda} x^{m_{\rho}^{\rho}}(-y)^{m_{\rho}^{c}} \tag{10}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
x=N+M \quad \text { and } \quad y=N-M \tag{11}
\end{equation*}
$$

Thus the expressions for $D_{\{\lambda\}}$ for $\mathrm{U}_{(N / M)}$ become simple polynomials in x and y that may be directly read off the S_{n} character tables (Littlewood 1950) to give the results shown in table 1. It follows from the comparison of (9) and (10) that the dimensions $D_{\overline{\{\lambda\}}}$ may be obtained from those of $D_{\{\lambda\}}$ by simply replacing y by $-y$ in table 1.

Since for S_{n}

$$
\begin{equation*}
\chi_{\rho}^{\hat{\lambda}}=\chi_{\rho}^{1^{n}} \chi_{\rho}^{\lambda}=\varepsilon_{\rho} \chi_{\rho}^{\lambda} \tag{12}
\end{equation*}
$$

(with $\omega_{\lambda}=n$) we can obtain the dimensions $D_{\{\lambda\}}$ from the polynomial expressions for $D_{\{\lambda\}}$ by making the replacements

$$
\begin{equation*}
x^{k} y^{l} \rightarrow(-1)^{n+k+l} x^{k} y^{l} \tag{13}
\end{equation*}
$$

Table 1. Dimensions of covariant irreps $\{\lambda\}$ of $\mathrm{U}_{(N / M)}$.
$\{\lambda\} \quad D_{\{\lambda\}}$
\{1\} $\quad x$
$\{2\} \quad(1 / 2!)\left(x^{2}+y\right)$
$\{3\} \quad(x / 3!)\left(x^{2}+3 y+2\right)$
$\{21\} \quad(2 x / 3!)\left(x^{2}-1\right)$
\{4\} $\quad(1 / 4!)\left(x^{4}+6 x^{2} y+8 x^{2}+3 y^{2}+6 y\right)$
$\{31\} \quad(3 / 4!)\left(x^{4}+2 x^{2} y-y^{2}-2 y\right)$
$\left\{2^{2}\right\} \quad(2 / 4!)\left(x^{4}-4 x^{2}+3 y^{2}\right)$
\{5\} $\quad(x / 5!)\left(x^{4}+10 x^{2} y+20 x y+15 y^{2}+50 y+24\right)$
$\{41\} \quad(4 x / 5!)\left(x^{4}+5 x^{2} y+5 x^{2}-5 y-6\right)$
\{32\} $\quad(5 x / 5!)\left(x^{4}+2 x^{2} y-4 x^{2}+3 y^{2}-2 y\right)$
$\left\{31^{2}\right\} \quad(6 x / 5!)\left(x^{4}-5 y^{2}+4\right)$
\{6\} $\quad(1 / 6!)\left(x^{6}+15 x^{4} y+40 x^{4}+45 x^{2} y^{2}+15 y^{3}+210 x^{2} y+184 x^{2}+90 y^{2}+120 y\right)$
$\{51\} \quad(5 / 6!)\left(x^{6}+9 x^{4} y+16 x^{4}+9 x^{2} y^{2}-3 y^{2}+18 x^{2} y-8 x^{2}-18 y^{2}-24 y\right)$
$\{42\} \quad(9 / 6!)\left(x^{6}+5 x^{4} y+5 x^{2} y^{2}-10 x^{2} y+5 y^{3}-10 y^{2}-16 x^{2}\right)$
$\left\{41^{2}\right\} \quad(10 / 6!)\left(x^{6}+3 x^{4} y+4 x^{4}-9 x^{2} y^{2}-12 x^{2} y-3 y^{3}+4 x^{2}+12 y\right)$
$\left\{3^{2}\right\} \quad(5 / 6!)\left(x^{6}+3 x^{4} y-8 x^{4}+9 x^{2} y^{2}+6 x^{2} y-9 y^{3}+16 x^{2}-18 y^{2}\right)$
$\{321\} \quad(16 / 6!)\left(x^{4}-5 x^{2}+4\right)$
$\{7\} \quad(x / 7!)\left(x^{6}+21 x^{4} y+70 x^{4}+105 x^{2} y^{2}+630 x^{2} y^{2}+105 y^{3}+784 x^{2}+840 y^{2}+1764 y+720\right)$
\{61\} $\quad(6 x / 7!)\left(x^{6}+14 x^{4} y+35 x^{4}+35 x^{2} y^{2}+140 x^{2} y+84 x^{2}-35 y^{2}-154 y-120\right)$
\{52\} $\quad(14 x / 7!)\left(x^{6}+9 x^{4} y+10 x^{4}+15 x^{2} y^{2}-56 x^{2}+15 y^{3}+15 y^{2}-24 y\right)$
$\left\{51^{2}\right\} \quad(15 x / 7!)\left(x^{6}+7 x^{4} y+14 x^{4}-7 x^{2} y^{2}-14 x^{3} y-21 y^{3}-56 y^{2}+28 y+48\right)$
$\{43\} \quad(14 x / 7!)\left(x^{6}+6 x^{4} y-5 x^{4}+15 x^{2} y^{2}+4 x^{2}-15 y^{2}-6 y\right)$
$\{421\} \quad(35 x / 7!)\left(x^{6}+3 x^{4} y-2 x^{4}-3 x^{2} y^{2}-18 x^{2} y+3 y^{3}+12 y^{2}-8 x^{2}+12 y\right)$
$\left\{41^{3}\right\} \quad(20 x / 7!)\left(x^{6}+7 x^{4}-21 x^{2} y^{2}+14 x^{2}+21 y^{2}-36\right)$
$\left\{3^{2} 1\right\} \quad(21 x / 7!)\left(x^{6}+x^{4} y-10 x^{4}+5 x^{2} y^{2}+10 x^{2} y-15 y^{3}+24 x^{2}-20 y^{2}+4 y\right)$
$\{8\} \quad(1 / 8!)\left(x^{8}+28 x^{6} y+112 x^{6}+210 x^{4} y^{2}+1540 x^{4} y+2464 x^{4}+420 x^{2} y^{3}+4200 x^{2} y^{2}+11872 x^{2} y\right.$ $\left.+105 y^{4}+1260 y^{3}+4620 y^{2}+8448 x^{2}+5040 y\right)$
$\{71\} \quad(7 / 8!)\left(x^{8}+20 x^{6} y+64 x^{6}+90 x^{4} y^{2}+500 x^{4} y+544 x^{4}+60 x^{2} y^{3}+360 x^{2} y^{2}+320 x^{2} y-384 x^{2}\right.$ $\left.-15 y^{4}-180 y^{3}-660 y^{2}-720 y\right)$
$\{62\} \quad(20 / 8!)\left(x^{8}+14 x^{6} y+28 x^{6}+42 x^{4} y^{2}+98 x^{4} y-56 x^{4}+42 x^{2} y^{3}+84 x^{2} y^{2}-280 x^{2} y-288 x^{2}+21 y^{4}\right.$ $\left.+126 y^{3}+168 y^{2}\right)$
$\left\{61^{2}\right\} \quad(21 / 8!)\left(x^{8}+12 x^{6} y+32 x^{6}+10 x^{4} y^{2}+40 x^{4} y+64 x^{4}-60 x^{2} y^{3}-280 x^{2} y^{2}-192 x^{2} y+128 x^{2}-15 y^{4}\right.$ $\left.-60 y^{3}+60 y^{2}+240 y\right)$
\{53\} $\quad(28 / 8!)\left(x^{8}+10 x^{6} y+4 x^{6}+30 x^{4} y^{2}+10 x^{4} y-56 x^{4}+30 x^{2} y^{2}+60 x^{2} y^{2}+40 x^{2} y+96 x^{2}-15 y^{4}\right.$ $\left.-90 y^{3}-120 y^{2}\right)$
$\{521\} \quad\left(640 x^{2} / 8!\right)\left(x^{6}+7 x^{4} y+7 x^{4}-35 x^{2} y-56 x^{2}+28 y+48\right)$
$\left\{51^{3}\right\} \quad(35 / 8!)\left(x^{8}+4 x^{6} y+16 x^{6}-30 x^{4} y^{2}-20 x^{4} y+64 x^{4}-24 x^{2} y^{2}-36 x^{2} y^{3}+160 x^{2} y+9 y^{4}-36 y^{3}\right.$ $-36 y^{2}-144 y$)
$\left\{4^{2}\right\} \quad(14 / 8!)\left(x^{8}+8 x^{6} y-8 x^{6}+30 x^{4} y^{2}+20 x^{4} y+64 x^{4}-120 x^{2} y^{2}-208 x^{2} y-384 x^{2}+45 y^{4}+180 y^{3}\right.$ $\left.+180 y^{2}\right)$
\{431\} $\quad(70 / 8!)\left(x^{8}+4 x^{6} y-8 x^{6}+6 x^{4} y^{3}-8 x^{4} y-12 x^{2} y^{3}-24 x^{2} y^{2}+16 x^{2} y+16 x^{4}-3 y^{4}+12 y^{2}\right)$
$\left\{42^{2}\right\} \quad(56 / 8!)\left(x^{8}+2 x^{6} y-8 x^{6}-40 x^{4} y+30 x^{2} y^{3}+8 x^{2} y+4 x^{4}+48 x^{2}+5 y^{4}-60 y^{2}\right)$
$\left\{421^{2}\right\} \quad(90 / 8!)\left(x^{8}-14 x^{4} y^{2}+56 x^{2} y^{2}-64 x^{2}-7 y^{4}+28 y^{2}\right)$
$\left\{3^{2} 2\right\} \quad(42 / 8!)\left(x^{8}-16 x^{6}+10 x^{4} y^{2}+64 x^{4}-40 x^{2} y^{2}-64 x^{2}-15 y^{4}+60 y^{2}\right)$

The superdimension $S_{\{\lambda\}}$ of the irrep $\{\lambda\}$ of $U_{(N / M)}$ is defined as the difference $B-F$ between the boson number B and the fermion number F and may be obtained from $D_{\{\lambda\}}$ by replacing x and y in table 1 or by replacing N by y in (8), showing that $S_{\{\lambda\}}$ is simply the dimension $D_{\{\lambda\}}$ for $U_{(N-M)}$. Similarly we have

$$
\begin{equation*}
S_{\{\overline{ } \overline{ }}=-S_{\{\lambda\}} \tag{14}
\end{equation*}
$$

corresponding to interchanging the number of bosonic and fermionic components in going from class I to class II irreps. The superdimension $S_{\{\hat{\lambda}\}}$ is simply the dimension $D_{\{\bar{\lambda}\}}$ for $\mathrm{U}_{(N-M)}$. Thus, to find $S_{\{\bar{\lambda}\}}$ from table 1, make the replacement given by (13) and then replace x by y.

By way of example we have from table 1 for the $\{41\}$ irrep of $\mathrm{U}_{(N / M)}$

$$
D_{\{41\}}=(4 x / 5!)\left(x^{4}+5 x^{2} y+5 x^{2}-5 y-6\right)
$$

and from (13)

$$
D_{\{\widetilde{4} 1\}}=D_{\left\{21^{3}\right\}}=(4 x / 5!)\left(x^{4}-5 x^{2} y+5 x^{2}+5 y-6\right)
$$

and coincidently $D_{\{\overline{4}\}}=D_{\{\overline{4}\}}$. Similarly we have

$$
S_{\{41\}}=(4 y / 5!)\left(y^{4}+5 y^{3}+5 y^{2}-5 y-6\right)
$$

with

$$
S_{\{41\}}=-S_{\{41\}}
$$

and

$$
S_{\{\tilde{41\}}}=(4 y / 5!)\left(y^{4}-5 y^{3}+5 y^{2}+5 y-6\right) .
$$

These results hold for all N and M. Specialising to particular values of N and M, we have for $\mathrm{U}_{(2 / 1)}$

$$
\begin{aligned}
& D_{\{41\}}=16, \quad D_{\{\tilde{41\}}}=D_{\{41\}}=D_{\left\{21^{3}\right\}}=8, \\
& S_{\{41\}}=S_{\{41\}}=S_{\{\tilde{41\}}}=S_{\left\{21^{3}\right\}}=0,
\end{aligned}
$$

whereas for $U_{(5 / 2)}$ we have

$$
\begin{aligned}
& D_{\{41\}}=784, \quad D_{\{\widetilde{41\}}}=D_{\left\{21^{3}\right\}}=D_{\{41\}}=448, \\
& S_{\{41\}}=24, \quad S_{\{41\}}=-24, \quad S_{\left\{21^{3}\right\}}=0 .
\end{aligned}
$$

3. Branching rules

Balantekin and Bars have given procedures for obtaining branching rules. Some rules using Schur function methods have also been published (Delbourgo and Jarvis 1983, Dondi and Jarvis 1980, 1981, King 1982). The results given by Balantekin and Bars may be succinctly expressed in terms of Schur function operations. A number of important branching rules are summarised in table 2 with the Schur function series notation following that of Black et al (1983). The modification rules for the relevant subgroups have been given by Black et al (1983). Noting the branching rules for $\left.\mathrm{SU}_{(N / M)} \downarrow \mathrm{OS}_{(N / M)}\right)$ and $\mathrm{SU}_{(N / M)} \downarrow \mathrm{SpO}_{(N / M)}$, we can write the dimensions of the irrep of $\operatorname{OSp}_{(N / M)}$ and $\left.\mathrm{SpO}_{(N / M)}\right)$ in terms of those of $\mathrm{SU}_{(N / M)}$ to give

$$
\begin{equation*}
D_{[\lambda]}=D_{\{\lambda / C\}} \quad \text { and } \quad D_{\langle\lambda\rangle}=D_{\{\lambda / A\}} \tag{15}
\end{equation*}
$$

respectively. The dimensions for $\omega_{\lambda} \leqslant 4$ of $\operatorname{OSp}_{(N / M)}$ and $\mathrm{SpO}_{(N / M)}$ are listed in tables 3 and 4 respectively as polynomials in x and y. In each case the superdimension may be found by letting $x \rightarrow y$, giving the dimensions of $[\lambda]$ or $\langle\lambda\rangle$ for $\mathrm{O}_{(N-M)}$ and $\mathrm{Sp}_{(N-M)}$ respectively.

Table 2. Branching rules for covariant irreps.

$$
\begin{aligned}
& \mathrm{U}_{(N / M)} \downarrow \mathrm{U}_{N} \times \mathrm{U}_{M} \\
& \{\lambda\} \quad \downarrow \sum_{\zeta}\{\lambda / \zeta\} \times\{\tilde{\zeta}\} \\
& \mathrm{U}_{\left(N_{1}+N_{2} / M_{1}+M_{2}\right)} \backslash \mathrm{U}_{\left(N_{1} / M_{1}\right)} \times \mathrm{U}_{\left(N_{2} / M_{2}\right)} \\
& \text { \{ } \lambda \text { \} } \\
& \downarrow \sum_{\zeta}\{\lambda / \zeta\} \times\{\zeta\} \\
& \mathrm{U}_{\left(N_{1} N_{2}+M_{1} M_{2} / N_{1} M_{2}+N_{2} M_{1}\right)} \mathrm{U}_{\left(N_{1} / M_{1}\right)} \times \mathrm{U}_{\left(N_{2} / M_{2}\right)} \\
& \text { \{ } \lambda \text { \} } \\
& \downarrow \sum_{\xi}\{\lambda \circ \zeta\} \times\{\zeta\} \\
& \mathrm{SU}_{(N / M)} \downarrow \mathrm{SU}_{(N)} \times \mathrm{SU}_{(M)} \times \mathrm{U}_{(1)} \\
& \{\lambda\} \quad \left\lvert\, \sum_{\xi}\{\lambda / \zeta\} \times\{\tilde{\{ }\} \times\left\{\frac{\omega_{\lambda}-\omega_{\xi}}{N}+\frac{\omega_{\xi}}{M}\right\}\right. \\
& \mathrm{SU}_{\left(N_{1}+N_{2} / M_{1}+M_{2}\right)} \downarrow \mathrm{SU}_{\left(N_{1} / M_{1}\right)} \times \mathrm{SU}_{\left(N_{2} / M_{2}\right)} \times \mathrm{U}_{(1)} \\
& \text { \{ } \lambda\} \\
& \downarrow \sum_{\zeta}\{\lambda / \zeta\} \times\{\zeta\} \times\left\{\frac{\omega_{\lambda}-\omega_{\xi}}{N_{1}-M_{1}}-\frac{\omega_{\xi}}{N_{2}-M_{2}}\right\} \\
& \mathrm{SU}_{(N / M)} \downarrow \operatorname{OSp}_{(N / M)} \\
& \{\lambda\} \quad \downarrow[\lambda / D] \\
& \mathrm{SU}_{(N / M)} \downarrow \mathrm{SpO}_{(N / M)} \\
& \{\lambda\} \quad \downarrow\langle\lambda / B\rangle \\
& \mathrm{OS}_{(N / M)} \downarrow \mathrm{O}_{(\mathbb{N})} \times \mathrm{Sp}_{(M)} \\
& \text { [} \lambda] \quad \downarrow \sum_{\xi}[\lambda / \zeta] \times\langle\tilde{\zeta} / B\rangle \\
& \mathrm{SpO}_{(N / M)} \downarrow \mathrm{Sp}_{(N)} \times \mathrm{O}_{(M)} \\
& \langle\lambda\rangle \quad \downarrow \sum_{\xi}\langle\lambda / \zeta\rangle \times\langle\tilde{\zeta} / D\rangle
\end{aligned}
$$

Table 3. Dimensions of irreps of $\operatorname{OSp}_{(N / M)}$.

$[\lambda]$	$D_{[\lambda]}$
$[1]$	x
$[2]$	$(1 / 2!)\left(x^{2}+y-2\right)$
$\left[1^{2}\right]$	$(1 / 2!)\left(x^{2}-y\right)$
$[3]$	$\left(x / 3!\left(x^{2}+3 y-4\right)\right.$
$[21]$	$(2 x / 3!)\left(x^{2}-4\right)$
$\left[1^{3}\right]$	$(x / 3!)\left(x^{2}-3 y+2\right)$
$[4]$	$(1 / 4!)\left(x^{4}+6 x^{2} y-4 x^{2}+3 y^{2}-6 y\right)$
$[31]$	$\left(3 / 4!!\left(x^{4}+2 x^{2} y-y^{2}-2 y-8 x^{2}+8\right)\right.$
$\left[2^{2}\right]$	$(2 / 4)!\left(x^{4}-10 x^{2}+3 y^{2}-6 y\right)$
$\left[21^{2}\right]$	$(3 / 4!)\left(x^{4}-2 x^{2} y-y^{2}-4 x^{2}-2 y\right)$
$\left[1^{4}\right]$	$(1 / 4!)\left(x^{4}-6 x^{2} y+8 x^{2}+3 y^{2}-6 y\right)$

Table 4. Dimensions of irreps of $\mathrm{SpO}_{(N / M)}$.

$\langle\lambda\rangle$	$D_{(\lambda)}$
$\langle 1\rangle$	x
$\langle 2\rangle$	$(1 / 2!)\left(x^{2}+y\right)$
$\left\langle 1^{2}\right\rangle$	$(1 / 2!)\left(x^{2}-y-2\right)$
$\langle 3\rangle$	$(x / 3!)\left(x^{2}+3 y+2\right)$
$(21\rangle$	$(2 x / 3!)\left(x^{2}-1\right)$
$\left\langle 1^{3}\right\rangle$	$(x / 3!)\left(x^{2}+3 y-4\right)$
$\langle 4\rangle$	$(1 / 4!)\left(x^{4}+6 x^{2} y+8 x^{2}+3 y^{2}+6 y\right)$
$\langle 31\rangle$	$(3 / 4!)\left(x^{4}+2 x^{2} y-y^{2}-6 y-4 x^{2}\right)$
$\left\langle 2^{2}\right\rangle$	$(2 / 4!)\left(x^{4}-10 x^{2}+3 y^{2}+6 y\right)$
$\left\langle 21^{2}\right\rangle$	$(3 / 4!)\left(x^{4}-2 x^{2} y-8 x^{2}-y^{2}+2 y+8\right)$
$\left\langle 1^{4}\right\rangle$	$(1 / 4!)\left(x^{4}-6 x^{2} y-4 x^{2}+3 y^{2}-18 y\right)$

Acknowledgment

This work arose out of a conversation with Dr P D Jarvis.

References

Balantekin A B and Bars I 1981a J. Math. Phys. 221149

- 1981b J. Math. Phys. 221810
- 1982 J. Math. Phys. 23486

Black G R E, King R C and Wybourne B G 1983 J. Phys. A: Math. Gen. 161555
Black G R E and Wybourne B G 1983 J. Phys. A: Math. Gen. 162405
Delbourgo R and Jarvis P D 1983 J. Phys. A: Math. Gen. 16 L275
Dondi P H and Jarvis P D 1980 Z. Phys. C 4201

- 1981 J. Phys. A: Math. Gen. 14547

King R C 1982 Generalised Young tableaux for Lie algebras and Superalgebras, University of Southampton preprint
King R C, Luan Dehaui and Wybourne B G 1981 J. Phys. A: Math. Gen. 142509
Littlewood D E 1950 The theory of group characters 2nd edn (Oxford: Clarendon)
Macdonald I G 1979 Symmetric functions and Hall polynomials (Oxford: OUP)
Wybourne B G 1970 Symmetry principles and atomic spectroscopy (New York: Wiley-Interscience)

